In vitro-selected RNA cleaving DNA enzymes from a combinatorial library are potent inhibitors of HIV-1 gene expression.
نویسندگان
چکیده
Selective inactivation of a target gene by antisense mechanisms is an important biological tool to delineate specific functions of the gene product. Approaches mediated by ribozymes and RNA-cleaving DNA enzymes (DNA enzymes) are more attractive because of their ability to catalytically cleave the target RNA. DNA enzymes have recently gained a lot of importance because they are short DNA molecules with simple structures that are expected to be stable to the nucleases present inside a mammalian cell. We have designed a strategy to identify accessible cleavage sites in HIV-1 gag RNA from a pool of random DNA enzymes, and for isolation of DNA enzymes. A pool of random sequences (all 29 nucleotides long) that contained the earlier-identified 10-23 catalytic motif were tested for their ability to cleave the target RNA. When the pool of random DNA enzymes was targeted to cleave between any A and U nucleotides, DNA enzyme 1836 was identified. Although several DNA enzymes were identified using a pool of DNA enzymes that was completely randomized with respect to its substrate-binding properties, DNA enzyme-1810 was selected for further characterization. Both DNA enzymes showed target-specific cleavage activities in the presence of Mg(2+) only. When introduced into a mammalian cell, they showed interference with HIV-1-specific gene expression. This strategy could be applied for the selection of desired target sites in any target RNA.
منابع مشابه
Identification of cellular cofactors for human immunodeficiency virus replication via a ribozyme-based genomics approach.
Ribozymes are small, catalytic RNA molecules that can be engineered to down-regulate gene expression by cleaving specific mRNA. Here we report the selection of hairpin ribozymes that inhibit human immunodeficiency virus (HIV) replication from a combinatorial ribozyme library. We identified a total of 17 effective ribozymes, each capable of inhibiting HIV infection of human CD4(+) cells. These r...
متن کاملBioinformatics Designing of 10-23 Deoxyribozyme against Coding Region of Beta-galactosidase Gene
Background: Deoxyribozymes (Dzs) can play a role as gene expression inhibitors at mRNA level. Among Dzs, the 10-23 deoxyribozyme has significant potentials for treatment of diseases. Designed Dz includes a catalytic core made of 15 deoxyribonucleotides and two binding arms consisted of 6-12 nucleotides for site specific binding to target RNA and hydrolysis. The enzyme has characteristic feature...
متن کاملInhibition of HIV-1 gene expression by novel macrophage-tropic DNA enzymes targeted to cleave HIV-1 TAT/Rev RNA.
Many regions of the HIV-1 genome have been targeted in earlier studies by RNA-cleaving DNA enzymes possessing the 10-23 catalytic motif, and efficient inhibition of HIV-1 gene expression was reported. All these studies employed charged synthetic lipids to introduce the catalytic DNA into the mammalian cells, which severely limits its practical application and usefulness in vivo. Taking advantag...
متن کاملEngineering DNA aptamers and DNA enzymes with fluorescence-signaling properties*
Single-stranded DNA molecules with ligand-binding ability and catalytic function, referred to as DNA aptamers and DNA enzymes, respectively, are special DNA sequences isolated from random-sequence DNA libraries by “in vitro selection”. These two new classes of artificial DNA molecules have the potential of being used as molecular tools in a variety of innovative applications ranging from biosen...
متن کاملEvaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 352 Pt 3 شماره
صفحات -
تاریخ انتشار 2000